壓鑄常用的金屬以鋁、鋅、鎂為主,三者在強度、密度、流動性與耐腐蝕特性上各具優勢,能依據產品用途選擇最適合的材料。鋁材的最大特色是重量輕、強度高,能在提升結構剛性的同時減少負重。鋁具備良好耐腐蝕能力,在溫度與濕度變化大的環境中仍能維持穩定表現。鋁液冷卻速度快,使壓鑄件尺寸精準、表面平滑,但因凝固迅速,製作複雜形狀時需較高射出壓力以確保完整充填。
鋅材的流動性最優,能輕鬆呈現薄壁與微細結構,是製作小型精密零件的常見材料。鋅的密度較高,使成品手感扎實且具備出色耐磨性。由於鋅熔點低,可降低模具磨耗並提高生產效率,非常適合大量生產需要精細外觀與細節的金屬組件,例如扣具、飾片和機構零件。
鎂材是三者中密度最低、最輕的金屬,能提供極佳的輕量化效果。鎂具有適度強度、良好剛性與天然吸震特性,特別適合承受動態負荷或需要降低震動的應用,如外殼、支架與移動裝置結構件。鎂壓鑄成型速度快,有助提升產能,但因化學活性高,熔融過程需穩定控溫,以避免氧化影響表面與內部品質。
鋁重視強度與輕量、鋅擅長精密與細節呈現、鎂提供極致減重與吸震性能,依產品需求選材能讓壓鑄效果更符合功能與品質目標。
壓鑄是一種高效的金屬加工工藝,適合大規模生產高精度零件。金屬液在高壓下注入模具中,迅速成型,能夠快速生產出複雜的外型和細節。由於成型時間短,冷卻迅速,壓鑄零件表面平滑,且尺寸一致性高,對於精度要求高的產品如汽車零件、電子產品外殼等非常適合。隨著產量的增加,單件成本會顯著降低,因此在大批量生產中,壓鑄的性價比非常突出。
鍛造則利用外力將金屬材料塑性變形,能夠提升金屬的強度、耐衝擊性及耐疲勞性。此工法主要應用於需要高強度的零件,並且通常用於承受較大負載的部件,如飛機結構件或機械部件。鍛造對於形狀的自由度有一定限制,難以製作過於複雜的形狀,因此其應用場景主要集中在對性能要求高而形狀較簡單的零件上。鍛造的成本較高,且加工週期長,適用於中小批量生產。
重力鑄造利用金屬液的重力流入模具,這使得該工法設備簡單,模具壽命較長,且成本較低。然而,由於金屬液流動速度較慢,細節呈現與精度較差,並且冷卻時間較長,限制了生產速度。這使得重力鑄造較適合生產中大型、形狀簡單且對精度要求不高的零件,常見於中低量生產。
加工切削則是通過刀具逐層移除材料來達到極高的尺寸精度和表面光滑度。這種工法適用於需要極窄公差和高精度的零件,並能處理複雜的內部結構。然而,加工時間較長、材料利用率低,單件成本較高。加工切削主要用於少量生產、高精度要求的零件,或者作為其他工法後的精密修整。
每種金屬加工工法的效率、精度、產量與成本差異使它們適用於不同的生產需求,選擇最合適的加工方式能確保製造過程的高效性與經濟性。
壓鑄模具的結構設計是決定產品精度的核心要素。當型腔幾何、分模面與澆道配置依照金屬液在高壓下的流動特性進行規劃,填充行為將更均勻,使薄壁、尖角與細節區域能完整成形。若流道不順或分模位置不當,容易造成填充不足、變形或毛邊,使尺寸精度下降,因此設計初期就需兼顧流動、成形與脫模三者的平衡。
散熱系統則影響模具效率與耐用度。壓鑄製程具有高溫、高壓特性,若冷卻通道分布不均,模具會產生局部過熱,使成品表面出現亮斑、流痕或粗糙紋理,也容易加速模具疲勞。完整且均衡的水路能維持模具溫度穩定,加快冷卻速度,提升生產節拍,同時降低裂紋與磨耗發生的風險。
至於表面品質,則取決於型腔加工精度與表面處理。當型腔越平滑,金屬液貼附越均勻,成品表面會更細緻光滑;若配合表面強化或耐磨處理,更能減少長期運作帶來的磨耗,使外觀品質在大量生產中仍能保持一致。
模具保養的重要性在於維持生產穩定與延長壽命。排氣孔、分模面與頂出機構在使用中容易累積積碳、金屬屑或磨損,若未定期清潔,會造成頂出不順、毛邊增加或散熱能力下降。透過定期檢查、修磨與清潔,可讓模具保持良好狀態,使壓鑄製程更順暢,成品品質也能持續維持在良好水準。
壓鑄是一種以高壓將熔融金屬射入模具,使金屬迅速凝固成形的加工方式,常用於生產外型複雜、尺寸需要高度一致的金屬零件。製程從金屬材料準備開始,常見鋁合金、鋅合金與鎂合金,在高溫下能保持優良流動性,進入模腔後可完整呈現細節。
模具是壓鑄技術的核心,由固定模與活動模組成,兩者閉合後形成產品的模腔。模具內部設計包含澆口、排氣槽及冷卻水路,各自負責金屬液流動與凝固品質。澆口用於導引熔融金屬正確流入模腔;排氣槽排出模內空氣,使填充更順暢;冷卻水路則控制模具溫度,使金屬在凝固時不致產生變形或縮痕。
金屬在熔融後會注入壓室,並在高壓力驅動下高速射入模具。這個高壓射出階段是壓鑄最具特色的工序,能讓金屬液瞬間填滿所有區域,即使是薄壁、尖角或複雜幾何,也能確實成形。金屬液與模壁接觸後立即冷卻,由液態轉成固態,外型在極短時間內被鎖定。
當金屬完全凝固後,模具會開啟並透過頂出裝置將成形零件推出。脫模後的零件通常會進行修邊、倒角或簡易表面加工,使外觀更為完整並貼近使用需求。整個壓鑄流程依靠材料流動性、高壓注射與模具結構的精準配合,形成高效率與高精度兼具的金屬成形工藝。
壓鑄製品在製程中面臨著各種品質挑戰,精度誤差、縮孔、氣泡和變形等問題常常會影響到產品的強度、外觀和功能。這些問題的來源通常與金屬熔液的流動性、冷卻速率、模具設計及氣體排放等因素密切相關。精確的品質檢測方法對於確保壓鑄製品達到設計標準至關重要。
壓鑄件的精度評估是最基本的品質要求之一。由於熔融金屬流動性不均、模具磨損及冷卻過程中的不穩定等因素,可能會導致壓鑄件的尺寸誤差。這些誤差會影響到產品的適配性與功能性,尤其對於精密部件而言,這些偏差會導致無法正常裝配或操作。三坐標測量機(CMM)是一種常用的高精度檢測工具,能夠準確測量壓鑄件的尺寸與形狀,並與設計要求進行比對,確保每個製品的精度符合規範。
縮孔問題常發生於金屬冷卻過程中,尤其在較厚部件的壓鑄中。當熔融金屬在固化時會收縮,造成內部出現空洞,這會削弱壓鑄件的強度,影響其結構穩定性。檢測縮孔常用的技術是X射線檢測,這能穿透金屬表面,顯示內部結構,幫助發現縮孔並進行修正。
氣泡問題則是由於金屬熔液注入模具過程中未能完全排出空氣所產生。這些氣泡會導致金屬的密度下降,進而影響壓鑄件的強度。超聲波檢測技術是檢測氣泡的一種常用方法,利用超聲波的反射特性可以檢測金屬內部的微小氣泡。
變形問題通常與冷卻過程中的不均勻收縮有關,這會導致壓鑄件形狀發生變化,從而影響其外觀與結構。紅外線熱像儀可用來監測模具內的溫度分佈,幫助確保冷卻過程的均勻性,減少變形的風險。