壓鑄模具的結構設計會決定金屬液在高壓射入時的流動方式,因此型腔幾何、流道直徑與澆口配置必須依照產品形狀與肉厚差異精準規劃。當金屬液能均勻充填,薄壁區域與細節就能完整成形,使產品尺寸精度更穩定。若流動方向不佳或流道阻力差異過大,容易產生冷隔、縮孔與變形,讓精度難以控制。
散熱設計則影響模具在生產中的溫度穩定度。壓鑄過程反覆承受極高溫金屬液衝擊,若冷卻水路配置不當,模具會出現局部過熱,使表面產生亮斑、粗糙紋或翹曲。合理的冷卻佈局能使模具快速回到適合的工作溫度,使每次成形條件更一致,同時延緩熱疲勞造成的裂紋,使模具更耐用。
型腔表面品質則與加工精度密切相關。加工越精細,金屬液貼附越均勻,成品表面越光滑;若搭配耐磨或硬化處理,可減少長期摩擦造成的型腔磨耗,使產品保持穩定的外觀品質,不易出現拖痕或表面粗化。
模具保養是維持長期穩定量產的重要環節。排氣孔、分模面與頂出結構在長時間運作後容易累積積碳與粉渣,若未定期清潔與修整,會造成頂出卡滯、毛邊增加或散熱效率下降。透過例行保養、檢查磨耗並修補關鍵部位,能延長模具壽命,使壓鑄製程保持高穩定度並降低不良率。
鋁、鋅、鎂是壓鑄製程中最常用的三種金屬材料,它們在強度、重量、耐腐蝕性與成型能力上的特性差異,直接影響產品品質與設計方向。鋁材具有低密度與高比強度,適用於追求輕量化且需具備結構剛性的零件。鋁合金的耐腐蝕性優良,可承受環境變化,再加上散熱效果突出,使其常用於外殼、散熱模組與承重構件。鋁的流動性中等,設計中若包含薄壁或細緻紋理,需配合更精準的模具與澆道設計才能達到完整充填。
鋅材以卓越的流動性著稱,能輕鬆成型複雜幾何與微小細節,因此非常適合小型精密零件、機構元件與外觀件。鋅合金熔點低,壓鑄週期短,能有效提高生產效率。其強度與韌性均衡,可應對一般磨耗,但密度較高,在重量敏感的應用中較不具優勢。
鎂材則是三者中最輕的金屬,具有顯著的重量優勢,適合需要大量減重的產品。鎂合金具高比強度,在輕量化與剛性之間保持良好平衡,常使用於大型外殼、支架與手持裝置零件。鎂的流動性優於鋁,但對溫度與製程條件更敏感,需更穩定的加工環境才能獲得一致表面與尺寸。
鋁偏重結構與散熱、鋅擅長高精度成型、鎂突出極致輕量化,依據產品要求選擇材料能提升壓鑄件的整體性能與製程效率。
壓鑄是一種以高壓將熔融金屬射入模具,使金屬迅速凝固成形的加工方式,常用於生產外型複雜、尺寸需要高度一致的金屬零件。製程從金屬材料準備開始,常見鋁合金、鋅合金與鎂合金,在高溫下能保持優良流動性,進入模腔後可完整呈現細節。
模具是壓鑄技術的核心,由固定模與活動模組成,兩者閉合後形成產品的模腔。模具內部設計包含澆口、排氣槽及冷卻水路,各自負責金屬液流動與凝固品質。澆口用於導引熔融金屬正確流入模腔;排氣槽排出模內空氣,使填充更順暢;冷卻水路則控制模具溫度,使金屬在凝固時不致產生變形或縮痕。
金屬在熔融後會注入壓室,並在高壓力驅動下高速射入模具。這個高壓射出階段是壓鑄最具特色的工序,能讓金屬液瞬間填滿所有區域,即使是薄壁、尖角或複雜幾何,也能確實成形。金屬液與模壁接觸後立即冷卻,由液態轉成固態,外型在極短時間內被鎖定。
當金屬完全凝固後,模具會開啟並透過頂出裝置將成形零件推出。脫模後的零件通常會進行修邊、倒角或簡易表面加工,使外觀更為完整並貼近使用需求。整個壓鑄流程依靠材料流動性、高壓注射與模具結構的精準配合,形成高效率與高精度兼具的金屬成形工藝。
壓鑄製品的品質要求對於產品的結構穩定性和功能性至關重要。壓鑄件在生產過程中,會面臨精度誤差、縮孔、氣泡和變形等問題。這些問題的來源通常與金屬熔液的流動、模具設計、冷卻過程等因素有關。針對這些常見問題,選擇正確的檢測技術,有助於保證產品符合高品質要求。
精度誤差常由金屬熔液流動不均、模具設計缺陷或冷卻過程中的不穩定性引起。這些誤差會影響壓鑄件的尺寸和形狀,進而影響產品的裝配與使用功能。為了評估壓鑄件的精度,三坐標測量機(CMM)是最常用的檢測工具。它能夠精確測量每一個壓鑄件的尺寸,並與設計標準進行比較,及早發現並修正誤差,確保產品的精度。
縮孔問題通常在金屬冷卻過程中發生,尤其在製作厚部件時,金屬在冷卻固化過程中會因為收縮形成孔隙,這些縮孔會減少壓鑄件的強度與結構穩定性。X射線檢測技術被廣泛應用於檢查縮孔,能夠穿透金屬,顯示內部結構,幫助及早發現並修正縮孔問題。
氣泡缺陷主要由熔融金屬未能完全排出模具中的空氣造成。這些氣泡會在金屬內部形成不均勻結構,影響其密度與強度。超聲波檢測技術可用來檢測氣泡,通過聲波反射來定位氣泡位置,幫助發現並修復這些缺陷。
變形問題通常由冷卻過程中的不均勻收縮引起,當金屬冷卻不均時,壓鑄件形狀會發生變化。紅外線熱像儀可以監控冷卻過程中的溫度變化,幫助確保冷卻過程均勻,從而減少變形問題的發生。
壓鑄以高壓方式將金屬液迅速注入模具,使產品能在極短時間內成型,適合大量製造外型複雜、細節精細的零件。由於充填速度快、模具精度高,壓鑄件的尺寸一致性佳,表面平滑度優良,後加工量相對較少,使整體生產效率與成本控制表現亮眼。
鍛造依靠外力塑形金屬,使材料的內部組織更為緊密,因此在強度、耐衝擊性方面具備明顯優勢。鍛造成品的結構穩定度高,但成型速度慢、模具投入大,加上不易打造複雜幾何,使其成本較壓鑄高。適合應用在需要承受高載重或高耐用度的零件,而非追求大量生產與細節呈現的產品。
重力鑄造利用金屬液自然落入模具,製程設備簡單,模具壽命長,但金屬流動性受限,使細節表現與尺寸穩定度不如壓鑄。澆注與冷卻時間較長,使產量提升受限,常用於中大型、壁厚均勻的零件,用於中低量生產較為合適。
加工切削透過刀具逐層去除材料,能達到極高精度與優異表面品質,是四種工法中最能控制公差的方式。然而加工時間長、材料耗損高,使單件成本偏高,多用於小量製造、原型製作或壓鑄後的局部精密修整。
四種工法各具優勢,壓鑄在效率、細節與產量間取得良好平衡,適合多數中小型金屬零件的量產需求。